驗證極值 copula 確實是 copula
給定Schölzel/Friederichs (2008)中定義的極值 copula ,如何驗證 $ \frac{\partial C(u_1, u_2)}{\partial u_1} \geq 0? $ 對於 LHS,我有$$ \exp\left[\log(u_1u_2)A\left(\frac{\log(u_2)}{\log(u_1u_2)}\right)\right]\left[\frac{1}{u_1}A\left(\frac{\log(u_2)}{\log(u_1u_2)}\right)-\frac{\log(u_2)}{u_1\log(u_1u_2)}A^{\prime}\left(\frac{\log(u_2)}{\log(u_1u_2)}\right)\right] $$
導數造成困難。任何有關進展的幫助將不勝感激。
請注意,您只需要證明 $$ \begin{align*} A\left(\frac{\log(u_2)}{\log(u_1u_2)}\right)-\frac{\log(u_2)}{\log(u_1u_2)}A’\left(\frac{\log(u_2)}{\log(u_1u_2)}\right) \ge 0, \end{align*} $$ 或者,對於任何 $ t \in (0, 1) $ , $$ \begin{align*} A(t) - t A’(t) \ge 0. \end{align*} $$ 回顧 $ A $ 是一個凸函式 $ [0,, 1] $ 至 $ [1/2,, 1] $ , $ A(0)=A(1)=1 $ , 和 $ A(t) \ge \max(t, 1-t) $ . 從凸性來看,函式的路徑總是在任何點的切線之上。也就是說,對於任何 $ \xi, t \in (0, 1) $ , $$ \begin{align*} A(\xi) \ge A(t) + A’(t) (\xi -t). \end{align*} $$ 讓 $ \xi\rightarrow 1 $ , $$ \begin{align*} 1 \ge A(t) + A’(t) (1 -t). \end{align*} $$ 換句話說, $$ \begin{align*} A’(t) (1 -t) &\le 1-A(t)\ &\le 1-t. \end{align*} $$ 最後, $ A’(t) \le 1 $ . 然後, $$ \begin{align*} A(t) - t A’(t) \ge A(t) - t \ge 0. \end{align*} $$