利率

債券期權對沖

  • September 12, 2019

(我的問題)

請告訴我如何用計算過程解決(2)到(4)。這些都太難解決了。

提前謝謝你的幫助。


(交叉連結)

我在https://math.stackexchange.com/questions/3347148/bond-option-hedging/3349320#3349320上發布了同樣的問題


(原始問題)

練習 7.4 債券期權對沖

考慮一個投資組合 $ (\xi^T_t, \xi^S_t)_{t \in [0, T]} $ 由兩條到期債券組成[Math Processing Error], S 和值 $ T $

$$ \begin{eqnarray} V_t=\xi^T_t P(t, T) + \xi^S_t P(t, S) \end{eqnarray} $$ 有時[Math Processing Error],並假設它對沖債券看漲期權的收益 $ t $ $ ( P(T, S) - \kappa )^+ $ ,所以我們有 [數學處理錯誤]$$ \begin{eqnarray} V_t &=& E \left[ \exp \left( - \int^T_t r_s ds \right) \cdot ( P(T, S) - \kappa )^+ \middle| \mathcal{F}t \right] \ &=& P(t, T) E^{ \tilde{\mathbb{P}} } \left[ ( P(T, S) - \kappa )^+ \middle| \mathcal{F}t \right] \end{eqnarray} $$ (1) 假設 $ ( \sigma^T_t){t \in [0, T]} $ 和 $ ( \sigma^S_t){t \in [0, S]} $ 是確定性函式,表明具有行使價的債券期權的價格 $ \kappa $ 可以寫成

[Math Processing Error]$$ \begin{eqnarray} && E \left[ \exp \left( - \int^T_t r_s ds \right) \cdot ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] \nonumber \ && \qquad \qquad = P(t, T) E^{ \tilde{\mathbb{P}} } \left[ ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] \ && \qquad \qquad = P(t, T) C(X_t, \kappa, v(t, T) ) \ && \qquad \qquad = P(t, T) C(X_t, \kappa, \sigma) \end{eqnarray} $$ 在哪裡 $ X_t $ 是遠期價格 $ X_t \equiv P(t, S)/P(t, T) $ , $$ \begin{eqnarray} v^2(t, T) = \int^T_t \left( \sigma^S_u - \sigma^T_u \right)^2 du \end{eqnarray} $$ 和 $ C(X_t, \kappa, \sigma) $ 是要確定的函式。回想一下,如果[數學處理錯誤] $ X $ [數學處理錯誤] [數學處理錯誤] [數學處理錯誤]是一個居中的高斯隨機變數,均值 $ m_t $ 和變異數 $ v^2_t $ 給定 $ \mathcal{F}_t $ , 我們有 [數學處理錯誤]$$ \begin{eqnarray} E \left[ \left( e^X - K \right)^+ | \mathcal{F}t \right] &=& e^{ m_t + v^2_t /2 } N \left( \frac{v_t}{2} + \frac{1}{v_t} \left( m_t + \frac{v^2_t}{2} - \log K \right) \right) \nonumber \ && \qquad - K N \left( - \frac{v_t}{2} + \frac{1}{v_t} \left( m_t + \frac{v^2_t}{2} - \log K \right) \right) \end{eqnarray} $$ 在哪裡 $ N(x) $ , $ x \in \mathbb{R} $ , 表示高斯分佈函式,參見。引理 2.3。 (2) 我們假設投資組合 $ (\xi^T_t, \xi^S_t){t \in [0, T]} $ 是自籌資金,即

$$ \begin{eqnarray} dV_t=\xi^T_t dP(t, T) + \xi^S_t dP(t, S) \end{eqnarray} $$ 證明遠期投資組合價格 $ \hat{V_t} \equiv V_t/P(t, T) $ 滿足 $$ \begin{eqnarray} d\hat{V_t}=\frac{ \partial C(X_t, \kappa, v(t, T) ) }{ \partial x } d X_t. \end{eqnarray} $$ (3) 證明我們有

[數學處理錯誤]$$ \begin{eqnarray} dV_t &=& \left( \hat{V_t} - \frac{ P(t, S) }{ P(t, T) } \frac{ \partial C( X_t, \kappa, v(t, T) ) }{ \partial x } \right) dP(t, T) \nonumber \ && + \frac{ \partial C(X_t, \kappa, v(t, T) ) }{ \partial x } dP(t, S) \end{eqnarray} $$ (4) 計算對沖組合策略 $ (\xi^T_t, \xi^S_t)_{t \in [0, T]} $ 債券看漲期權 $ P(T, S) $ .


(1) 我的回答

  • 這種動態 $ dP(t, T) $ 用途 $ \sigma^T_t $ 作為它的波動性而不是 $ \zeta^T_t $ 在正文第 89 頁上。 $ dP(t, T) $ 與習題 7.3 相同。因此,回憶習題 7.3.(1) 的結果。換句話說,回想練習 4.3.(5) 的結果。除了, $ d B^T_t = d B_t - \sigma^T_t dt $ . 或者,回憶一下練習 7.1.(4) 和練習 7.1.(7)。練習 7.1 使用 $ \zeta_t $ 代替 $ \zeta^T_t $ 作為其動態的波動性 $ dP(t, T) $ .

[數學處理錯誤]$$ \begin{eqnarray} \frac{ dP(t, T)}{P(t, T)} &=& r_t dt + \sigma^T_t dB_t \ \frac{P(T, S)}{P(T, T)}&=&\frac{P(t, S)}{P(t, T)} \exp \left( \int^T_t \left( \sigma^S_u - \sigma^T_u \right) d B^T_u \right) \nonumber \ && \qquad \qquad \cdot \exp \left( - \frac{1}{2} \int^T_t \left( \sigma^S_u -\sigma^T_u \right)^2 du \right) \ P(T, S)&=&\frac{P(t, S)}{P(t, T)} \exp \left( \int^T_t \left( \sigma^S_u - \sigma^T_u \right) d B^T_u \right) \nonumber \ && \qquad \qquad \cdot \exp \left( - \frac{1}{2} \int^T_t \left( \sigma^S_u -\sigma^T_u \right)^2 du \right) \end{eqnarray} $$

  • 讓 $ m(t, T) $ 和 $ v^2(t, T) $ 如下。

[數學處理錯誤]$$ \begin{eqnarray} m(t, T) &=& \log \frac{P(t, S)}{P(t, T)} - \frac{1}{2} \int^T_t \left( \sigma^S_u -\sigma^T_u \right)^2 du \ v^2(t, T) &=& \left( \int^T_t \left( \sigma^S_u - \sigma^T_u \right) d B^T_u \right)^2 \ &=& \int^T_t \left( \sigma^S_u - \sigma^T_u \right)^2 du \ m(t, T) + \frac{ v^2(t, T) }{2} &=& \log \frac{P(t, S)}{P(t, T)} \end{eqnarray} $$

  • 將上述結果代入期望值。

[數學處理錯誤]$$ \begin{eqnarray} && E \left[ \exp \left( - \int^T_t r_s ds \right) \cdot ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] \nonumber \ && \qquad \qquad = E^{ \tilde{\mathbb{P}} } \left[ \frac{ P(t, T) }{ P(t, T) } \exp \left( - \int^T_t r_s ds \right) \cdot ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] \ && \qquad \qquad = P(t, T) E^{ \tilde{\mathbb{P}} } \left[ \frac{ 1 }{ P(T, T) } ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] \ && \qquad \qquad = P(t, T) E^{ \tilde{\mathbb{P}} } \left[ ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] \end{eqnarray} $$

  • 回憶習題 7.1.(7) 的結果。在這裡,讓 $ m(t, T) =m $ , $ v(t, T)=v $ , 和 $ \kappa=K $ .

[數學處理錯誤]$$ \begin{eqnarray} && E^{\mathbb{P}} \left[ \exp \left(- \int^T_t r_s ds \right) \cdot ( P(T,S) - K )^+ \middle| \mathcal{F}_t \right] \nonumber \ && \quad = P(t, T) e^{m+ v^2/2} N\left( v + \frac{m - \log K}{v} \right) -P(t, T) K N\left( \frac{m - \log K}{v} \right) \ && \quad = P(t, T) \frac{P(t,S) }{P(t,T)} N\left( v - \frac{v}{2} + \frac{1}{v} \log \frac{P(t,S) }{K \ P(t,T)} \right) \nonumber \ && \qquad -P(t, T) K N\left( - \frac{v}{2} + \frac{1}{v} \log \frac{P(t,S) }{K \ P(t,T)}\right) \ && \quad = P(t,S) N\left( \frac{v}{2} + \frac{1}{v} \log \frac{P(t,S) }{K \ P(t,T)} \right) \nonumber \ && \qquad -P(t, T) K N\left( - \frac{v}{2} + \frac{1}{v} \log \frac{P(t,S) }{K \ P(t,T)}\right) \ && \quad = P(t, T) \frac{ P(t,S) }{ P(t, T) } N\left( \frac{v}{2} + \frac{1}{v} \log \frac{P(t,S) }{K \ P(t,T)} \right) \nonumber \ && \qquad -P(t, T) K N\left( - \frac{v}{2} + \frac{1}{v} \log \frac{P(t,S) }{K \ P(t,T)}\right) \ && \quad = P(t, T) C\left( \frac{ P(t,S) }{ P(t, T) } , K, v \right) \ && \quad = P(t, T) C(X_t, \kappa, v(t, T) ) \ && \quad = P(t, T) C(X_t, \kappa, \sigma) \end{eqnarray} $$

[Math Processing Error] $ \square $


(2) ??? This is too difficult to solve!

Thank you for your help in advance.

I solved from (2) to (4) by myself !

(2) My answer

  • Use the result of (1) with keeping in mind that the following R.H.S is [Math Processing Error] $ \mathcal{F}_t $ measurable.

[Math Processing Error]$$ \begin{eqnarray} V_t &=& E^{\mathbb{P}} \left[ \exp \left(- \int^T_t r_s ds \right) \cdot ( P(T,S) - K )^+ \middle| \mathcal{F}_t \right] \ &=& P(t, T) E^{ \tilde{\mathbb{P}} } \left[ ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] \ &=& P(t, T) C(X_t, \kappa, v(t, T) ) \end{eqnarray} $$

  • 所以,

[Math Processing Error]$$ \begin{eqnarray} \hat{ V_t }&=& \frac{ V_t }{P(t, T)} \ &=& E^{ \tilde{\mathbb{P}} } \left[ ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] \ &=& C(X_t, \kappa, v(t, T) ) \end{eqnarray} $$

  • 首先,使用它[Math Processing Error] $ \hat{o} $ 的 LHS 公式

[Math Processing Error]$$ \begin{eqnarray} d \hat{ V_t }&=& 0 \ dt + d \hat{ V_t } + \frac{1}{2} \ 0 \ d [ \hat{ V_t }] \ &=& d \hat{ V_t } \end{eqnarray} $$

  • 二、回憶(1)的結果, $ C(X_t, \kappa, v(t, T) ) $ .

[Math Processing Error]$$ \begin{eqnarray} C(X_t, \kappa, v(t, T) ) &=& \frac{ P(t,S) }{ P(t, T) } N\left( \frac{v}{2} + \frac{1}{v} \log \frac{P(t,S) }{\kappa \ P(t,T)} \right) \nonumber \ && \qquad - \kappa N\left( - \frac{v}{2} + \frac{1}{v} \log \frac{P(t,S) }{\kappa\ P(t,T)}\right) \ &=& X_t N\left( \frac{v}{2} + \frac{1}{v} \log \frac{X_t}{\kappa } \right) \nonumber \ && \qquad - \kappa N\left( - \frac{v}{2} + \frac{1}{v} \log \frac{X_t }{\kappa }\right) \end{eqnarray} $$

  • 三、使用它 $ \hat{o} $ 的 RHS 公式

$$ \begin{eqnarray} d C(X_s, \kappa, v(s, T) ) &=& 0 \ ds + \partial_x C(X_s, \kappa, v(s, T) ) dX_s + \frac{1}{2} \ 0 \ d [ X_s ] \ \int^t_0 d C(X_s, \kappa, v(s, T) ) &=& \int^t_0 \partial_x C(X_s, \kappa, v(s, T) ) dX_s \ C(X_t, \kappa, v(t, T) ) &=& C(X_0, \kappa, v(0, T) ) \nonumber \ && \qquad+ \int^t_0 \partial_x C(X_s, \kappa, v(s, T) ) dX_s \ &=& E^{ \tilde{\mathbb{P}} } \left[ ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] \nonumber \ && \qquad + \int^t_0 \partial_x C(X_s, \kappa, v(s, T) ) dX_s \end{eqnarray} $$

  • 將上述結果代入 $ \hat{ V_t } $ .

$$ \begin{eqnarray} \hat{ V_t }&=&C(X_t, \kappa, v(t, T) ) \ &=& E^{ \tilde{\mathbb{P}} } \left[ ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] + \int^t_0 \partial_x C(X_s, \kappa, v(s, T) ) dX_s \end{eqnarray} $$

  • 而且,

[Math Processing Error]$$ \begin{eqnarray} E^{ \tilde{\mathbb{P}} } \left[ ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] &=& E^{ \tilde{\mathbb{P}} } \left[ ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] \nonumber \ && \qquad + \int^t_0 \partial_x C(X_s, \kappa, v(s, T) ) dX_s \ \int^t_0 \partial_x C(X_s, \kappa, v(s, T) ) dX_s &=&0 \end{eqnarray} $$

  • 所以,

[Math Processing Error]$$ \begin{eqnarray} \hat{ V_t }&=&C(X_t, \kappa, v(t, T) ) \ &=& E^{ \tilde{\mathbb{P}} } \left[ ( P(T, S) - \kappa )^+ \middle| \mathcal{F}_t \right] \end{eqnarray} $$

  • 另一方面,因此,

$$ \begin{eqnarray} \hat{ V_t } &=& C(X_t, \kappa, v(t, T) ) \ d \hat{ V_t } &=& d C(X_t, \kappa, v(t, T) ) \ &=& \partial_x C(X_t, \kappa, v(t, T) ) dX_t \end{eqnarray} $$

$ \square $


(3) 我的回答

  • 用它 $ \hat{o} $ 的公式。

$$ \begin{eqnarray} d V_t &=& d (P(t, T) \cdot \hat{ V_t } ) \ &=& \partial_t (P(t, T) \cdot \hat{ V_t } ) dt \nonumber \ && \quad + \hat{ V_t } \partial_x P(t, T) |{x=P(t,T)} dP(t,T) + P(t, T) \partial_y \hat{ V_t } |{y=\hat{ V_t } } d \hat{ V_t } \nonumber \ && \quad + \frac{1}{2} \hat{ V_t } \partial_{xx} P(t, T) |{x=P(t,T)} d[ P(t,T) ] + \frac{1}{2} P(t,T) \partial{yy} \hat{ V_t } |{y=\hat{ V_t }} d[ \hat{ V_t } ] \nonumber \ && \quad + \frac{1}{2} \partial{xy} (P(t, T) \cdot \hat{ V_t } ) |{x=P(t,T), y=\hat{ V_t }} d[ P(t,T) , \hat{ V_t } ] \nonumber \ && \quad+ \frac{1}{2} \partial{yx} (P(t, T) \cdot \hat{ V_t } ) |_{ y=\hat{ V_t }, x=P(t,T)} d[ \hat{ V_t }, P(t,T) ] \ &=& \hat{ V_t }dP(t,T) + P(t, T) d \hat{ V_t } + d[ \hat{ V_t }, P(t,T) ] \end{eqnarray} $$

  • 使用 (2) 的結果。

$$ \begin{eqnarray} d V_t &=& \hat{ V_t }dP(t,T) + P(t, T) d \hat{ V_t } + d[ \hat{ V_t }, P(t,T) ] \ &=& \hat{ V_t }dP(t,T) + P(t, T) \partial_x C(X_t, \kappa, v(t, T) ) dX_t \nonumber \ && \quad + \partial_x C(X_t, \kappa, v(t, T) ) dP(t, T) dX_t \ &=& \hat{ V_t }dP(t,T) - \partial_x C(X_t, \kappa, v(t, T) ) X_t dP(t, T) \nonumber \ && \quad + \partial_x C(X_t, \kappa, v(t, T) ) X_t dP(t, T) \nonumber \ && \quad + \partial_x C(X_t, \kappa, v(t, T) ) P(t, T) dX_t \nonumber \ && \quad + \partial_x C(X_t, \kappa, v(t, T) ) dP(t, T) dX_t \end{eqnarray} $$

  • 在這裡,一個計算的動態 $ P(t, S) $ 使用的定義 $ X_t=P(t, S)/P(t, T) $ 通過它 $ \hat{o} $ 的公式。

[數學處理錯誤]$$ \begin{eqnarray} d P(t, S) &=& d(X_t P(t, T)) \ &=& \partial_t (X_t P(t, T)) dt \nonumber \ && \quad + P(t, T) \partial_x X_t |{x=X_t} dX_t + X_t \partial_y P(t, T) |{y=P(t, T)} dP(t, T) \nonumber \ && \quad + \frac{1}{2} P(t, T) \partial_{xx} X_t |{x=X_t} d [X_t ] \nonumber \ && \quad + \frac{1}{2} X_t \partial{yy} P(t, T) |{y=P(t, T)} d [P(t, T) ] \nonumber \ && \quad + \frac{1}{2} \partial{xy} (X_t P(t, T)) |{x=X_t, y=P(t,T)} d[ X_t, P(t,T) ] \nonumber \ && \quad + \frac{1}{2} \partial{yx} (X_t P(t, T)) |_{y=P(t,T), x=X_t} d[P(t,T), X_t ] \ &=& P(t, T) dX_t + X_t dP(t, T) + d[ X_t, P(t,T) ] \ &=& P(t, T) dX_t + X_t dP(t, T) + d X_t dP(t,T) \ &=& P(t, T) dX_t + X_t dP(t, T) + dP(t,T) d X_t \end{eqnarray} $$

  • 將上述結果代入 $ dV_t $ .

[數學處理錯誤]$$ \begin{eqnarray} d V_t &=& \hat{ V_t }dP(t,T) - \partial_x C(X_t, \kappa, v(t, T) ) X_t dP(t, T) \nonumber \ && \quad + \partial_x C(X_t, \kappa, v(t, T) ) X_t dP(t, T) \nonumber \ && \quad + \partial_x C(X_t, \kappa, v(t, T) ) P(t, T) dX_t \nonumber \ && \quad + \partial_x C(X_t, \kappa, v(t, T) ) dP(t, T) dX_t \ &=& \left( \hat{ V_t } - X_t \partial_x C(X_t, \kappa, v(t, T) ) \right) dP(t, T) \nonumber \ && \quad + \partial_x C(X_t, \kappa, v(t, T) ) d P(t, S) \ &=& \left( \hat{ V_t } - \frac{P(t, S)}{P(t, T)} \partial_x C(X_t, \kappa, v(t, T) ) \right) dP(t, T) \nonumber \ && \quad + \partial_x C(X_t, \kappa, v(t, T) ) d P(t, S) \end{eqnarray} $$

[數學處理錯誤] $ \square $


(4) 我的回答

  • (2) 假設投資組合 $ (\xi^T_t, \xi^S_t)_{t \in [0, T]} $ 是自籌資金,即

[數學處理錯誤]$$ \begin{eqnarray} dV_t=\xi^T_t dP(t, T) + \xi^S_t dP(t, S) \end{eqnarray} $$

  • 一個也有另一種表達 $ dV_t $ 通過 (3)。

[數學處理錯誤]$$ \begin{eqnarray} d V_t &=&\left( \hat{ V_t } - \frac{P(t, S)}{P(t, T)} \partial_x C(X_t, \kappa, v(t, T) ) \right) dP(t, T) \nonumber \ && \quad + \partial_x C(X_t, \kappa, v(t, T) ) d P(t, S) \end{eqnarray} $$

  • item 比較以上兩個方程,得出以下方程。

[數學處理錯誤]$$ \begin{eqnarray} \xi^S_t &=& \partial_x C(X_t, \kappa, v(t, T) ) \ \xi^T_t &=& \hat{ V_t } - \frac{P(t, S)}{P(t, T)} \partial_x C(X_t, \kappa, v(t, T) ) \ &=& \hat{ V_t } - X_t \partial_x C(X_t, \kappa, v(t, T) ) \ &=& \hat{ V_t } - X_t \xi^S_t \end{eqnarray} $$

  • 回憶 (1) 的結果, $ C(X_t, \kappa, v(t, T) ) $ 以及 (2) 的結果,[數學處理錯誤]。 $ \hat{ V_t }=C(X_t, \kappa, v(t, T) ) $

[數學處理錯誤]$$ \begin{eqnarray} C(X_t, \kappa, v(t, T) ) &=& \frac{ P(t,S) }{ P(t, T) } N\left( \frac{v}{2} + \frac{1}{v} \log \frac{P(t,S) }{\kappa \ P(t,T)} \right) \nonumber \ && \qquad - \kappa N\left( - \frac{v}{2} + \frac{1}{v} \log \frac{P(t,S) }{\kappa\ P(t,T)}\right) \ &=& X_t N\left( \frac{v}{2} + \frac{1}{v} \log \frac{X_t}{\kappa } \right) \nonumber \ && \qquad - \kappa N\left( - \frac{v}{2} + \frac{1}{v} \log \frac{X_t }{\kappa }\right) \ \hat{ V_t } - X_t N\left( \frac{v}{2} + \frac{1}{v} \log \frac{X_t}{\kappa } \right) &=& - \kappa N\left( - \frac{v}{2} + \frac{1}{v} \log \frac{X_t }{\kappa }\right) \end{eqnarray} $$

  • 將上述等式與[數學處理誤差]進行比較,可以得出以下等式。 $ \xi^T_t $

[數學處理錯誤]$$ \begin{eqnarray} \xi^S_t &=& N\left( \frac{v}{2} + \frac{1}{v} \log \frac{X_t}{\kappa } \right) \ &=& N\left( \frac{v(t, T) }{2} + \frac{1}{v(t, T) } \log \frac{P(t, S)}{\kappa \ P(t, T)} \right) \ \xi^T_t &=& - \kappa N\left( - \frac{v}{2} + \frac{1}{v} \log \frac{X_t }{\kappa }\right) \ &=& - \kappa N\left( - \frac{v(t, T)}{2} + \frac{1}{v(t, T)} \log \frac{P(t, S) }{\kappa \ P(t, T) }\right) \end{eqnarray} $$

[數學處理錯誤] $ \square $

引用自:https://quant.stackexchange.com/questions/47567