利率

等價率與復合現金流不匹配

  • January 21, 2022

我正在使用以下函式在 quantlib python 中計算兩天之間的等效率,但輸出與手動計算不匹配。

couponrate = ql.InterestRate(.0675, ql.Actual365Fixed(), ql.Compounded, ql.Monthly)
coupon = couponrate.equivalentRate(ql.Actual365Fixed(),ql.Compounded, ql.Quarterly,ql.Date(14,1,2020), ql.Date(14,4,2020)).rate()
print(coupon)

0.06788039941406243

但正確的等效速率值為 0.067879171338466

2020 年 1 月 14 日到 4 月 14 日有 91 天,所以它們之間的時間是 $ T = 91/365 $ .

今天給定 1美元,一個費率 $ r = 6.75% $ 每月復利 $ T $ 給出一個金額 $ A = (1 + r/12)^{T \times 12} $ , 所以:

>>> import math
>>> T = 91/365
>>> r = 0.0675
>>> A = math.pow(1 + r/12, T*12)
>>> print(A)
1.0169232152238288

每季度複利時給出相同數量的利率是 $ R $ 這樣 $ (1 + R/4)^{T \times 4} = A $ , 所以 $ R = 4 \times (A^{1/(T \times 4)} - 1) $ :

>>> R = 4 * (math.pow(A, 1/(T*4)) - 1)
>>> print(R)
0.06788039941406243

當然,您可以檢查這是否為您提供了相同的複合金額:

>>> print(math.pow(1 + R/4, T*4))
1.0169232152238288

你是如何計算你的結果的?

引用自:https://quant.stackexchange.com/questions/69558