利率
證明驗證:無風險利率
我想證明 $$ r_t = \theta + (r_0 -\theta)e^{-kt} $$ 滿足$$ dr_t = k(\theta-r_t)dt, \ r(0) = r_0 $$ 我有 $$ \begin{split}\frac{1}{\theta - r_t} dr_t = kdt \Rightarrow & \int_0^t \frac{1}{\theta - r_s} dr_s = \int_0^t kds\ \Rightarrow &- \ln|\theta - r_s|\big\lvert_0^t = ks\big\lvert_0^t\ \Rightarrow &-\ln|\theta - r_t| + \ln|\theta - r_0| = kt\ \Rightarrow &\ln|\theta - r_t| - \ln|\theta - r_0| = -kt\ \Rightarrow &\ln\left|\frac{\theta - r_t}{\theta - r_0}\right|= -kt\ \Rightarrow &\frac{r_t - \theta}{r_0-\theta} = e^{-kt}\ \Rightarrow & r_t = \theta + (r_0 -\theta)e^{-kt} \end{split} $$ 這是繼續的方法嗎?謝謝!
你有: $$ r(t):=\theta+(r_0-\theta)e^{-kt}\tag{1} $$ 然後: $$ r^\prime(t)=-k(r_0-\theta)e^{-kt}\tag{2} $$ 這顯然等於: $$ k(\theta-r(t))\tag{3} $$ 基於 $ (1) $ .