宏觀經濟學

中央銀行損失函式(我做了一個解決方案,但我猜它並不完全有意義)

  • October 18, 2019

我對中央銀行損失函式有疑問。

我們知道中央銀行的損失函式是

$$ L(\pi, \bar{Y})= (\pi- \pi^e)^2+\beta \bar {Y}^2 $$ 我們知道費雪方程是

$$ i=r+\pi^e $$ 在哪裡[數學處理錯誤] $ r $ 和 $ i $ 分別是實際利率和名義利率。

我想通過選擇來最小化 CB 的損失函式 $ i $

——-

我試圖解決它。但這是沒有意義的,所以錯了:(

當我在網上搜尋時,我總是看到 CB 損失函式是通過代入菲利普斯曲線來最小化的,並對 $ Y $ .

所以,我將費雪方程代入菲利普斯曲線,即[Math Processing Error] $ \pi=a \bar{Y} +\pi^e= a \bar{Y}+i-r $

然後我把這個方程代入損失函式 Ie[Math Processing Error] $ L(\pi, \bar{Y})= (a\bar{Y}+i-r- \pi^e)^2+\beta \bar {Y}^2 $

And take its derivative with respect to [Math Processing Error] $ i $

I got [Math Processing Error] $ 2(a\bar{Y}+i-r-\pi^e)=0 $

[Math Processing Error] $ i^*=\pi^e-a\bar{Y}+r $

But I think my way is wrong. Because this result doesn’t make sense.

Please let me show a way how to solve it. Any help would be appreciated.

Thanks a lot.

You need to differentiate with respect to Y, as you said! You substitute the phillips curve as you did (because it is a constraint for the central bank’s optimization problem), then differentiate w.r.t [數學處理錯誤] $ \bar{Y} $ (我假設這裡代表差距)並將其設置為 0 以獲得最優條件,這反過來將為您提供貨幣規則。回想一下,一旦使用貨幣規則確定了最佳產出-通貨膨脹組合,中央銀行就會設定利率以實施其選擇。

引用自:https://economics.stackexchange.com/questions/32308