宏觀經濟學

彈性方面的勞動力需求和供給曲線

  • January 16, 2021

我想請你幫忙推導出一些表達式。讓勞動力需求曲線描述為:

$ N^D = N^D(W/P, \bar{K}), \quad N^D_{W/P}= \frac{1}{F_{NN}}< 0, \quad N^D_K = -\frac{F_{NK}}{F_{NN}} > 0 $

和勞動力供給曲線:

$ W/P^e = g(N^S) $

我的問題是,我如何用彈性來表達這兩條曲線?我知道結果應該是:

$ \frac{dN^D}{N^D} = \frac{d\bar{K}}{\bar{K}} - \varepsilon_D \Big(\frac{dW}{W}-\frac{dP}{P} \Big) \ \frac{dN^S}{N^S} = \varepsilon_s \Big( \frac{dW}{W}-\frac{dP^e}{P^e}\Big) $

在哪裡 $ \varepsilon_D=-F_{NN}/(NF_{NN}) $ 和 $ \varepsilon_S = g(N)/(Ng_N) $ 分別表示勞動力需求和勞動力供給的工資彈性。

感謝您的幫助和時間。

這一結果在《現代宏觀經濟學基礎》第 14 頁上介紹。關鍵是要完全區分這兩種表達方式。

從勞動力供給開始:

$$ \begin{gather} W/P^e = g(N^S) \ d(W/P^e) = d\Big( g(N^S) \Big) \ \frac{1}{P^e} dW - \frac{W}{(P^e)^2}dP^e = g_NdN^S \ dN^S = \frac{1}{g_N}\frac{dW}{P^e} - \frac{1}{g_N}\frac{W}{P^e}\frac{dP^e}{P^e} \ dN^S = \frac{1}{g_N}\frac{dW}{P^e} - \frac{g(N^S)}{g_N}\frac{dP^e}{P^e}, \quad \text{where} \quad W/P^e = g(N^S) \ dN^S = \frac{1}{g_N}\frac{g(N^S)}{W}dW - \frac{g(N^S)}{g_N}\frac{dP^e}{P^e} \ dN^S = \frac{g(N^S)}{g_N} \bigg[ \frac{dW}{W} - \frac{dP^e}{P^e} \bigg] \ \frac{dN^S}{N^S} = \frac{g(N^S)}{N^Sg_N} \bigg[ \frac{dW}{W} - \frac{dP^e}{P^e} \bigg] \end{gather} $$

要推導出勞動需求的表達式,可以遵循類似的過程(我將省略上標 $ N^D $ 為簡單起見,但我們知道我們在談論勞動力需求)。回想一下,公司問題的 FOC 由下式給出:

$$ \begin{gather} PF_N(N,\bar{K}) = W \ F_N(N,\bar{K}) = \frac{W}{P} \ d\Big( F_N(N,\bar{K}) \Big) = d\Big( W/P \Big) \ F_{NN}dN + F_{NK}d\bar{K} = \frac{1}{P}dW - \frac{W}{P^2}dP \ F_{NN}dN + F_{NK}d\bar{K} = F_N\frac{dW}{W} - F_N\frac{dP}{P} \ F_{NN}dN = F_N \bigg[ \frac{dW}{W} - \frac{dP}{P} \bigg] - F_{NK}d\bar{K} \ dN = -\frac{F_{NK}}{F_{NN}}d\bar{K} + \frac{F_N}{F_{NN}}\bigg[ \frac{dW}{W} - \frac{dP}{P} \bigg] \ \frac{dN^D}{N^D} = -\frac{F_{NK}}{N^DF_{NN}}d\bar{K} + \frac{F_N}{N^DF_{NN}}\bigg[ \frac{dW}{W} - \frac{dP}{P} \bigg] \ \frac{dN^D}{N^D} = \frac{d\bar{K}}{\bar{K}} + \frac{F_N}{N^DF_{NN}}\bigg[ \frac{dW}{W} - \frac{dP}{P} \bigg], \quad \text{where} \quad KF_{NK} = -NF_{NN} \end{gather} $$

引用自:https://economics.stackexchange.com/questions/42147