條件期望和狄拉克三角函式
在證明中,
Dupire equation
我們最終得到一個涉及Dirac delta function
.如何證明
$$ \dfrac{E[\sigma_T^2\delta(S_T-K)]}{E[\delta(S_T-K)]}=E[\sigma_T^2|S_T = K]. $$ 在哪裡 $ \delta(x) $ 是個
Dirac delta function.
$ S_T $ 是一個隨機變數,並且 $ \sigma_T $ 還。
稍微濫用符號
$$ \begin{align} \Bbb{E}\left[ \sigma^2_T \vert S_T = K \right] &= \int_{0}^{+\infty} \sigma^2_T , p( \sigma^2_T \vert S_T = K) d\sigma^2_T \ &= \int_{0}^{+\infty} \sigma^2_T \frac{p(\sigma^2_T, S_T=K)}{p(S_T=K)} d\sigma^2_T \ &= \frac{\int_{0}^{+\infty} \sigma^2_T p(\sigma^2_T, S_T=K) d\sigma^2_T }{p(S_T=K)} \ &= \frac{\int_{0}^{\infty} \int_{0}^{+\infty} \sigma^2_T \delta(S_T-K) p(\sigma^2_T, S_T) d\sigma^2_T dS_T }{\int_{0}^{+\infty} \delta(S_T-K) p(S_T) dS_T} \ &= \frac{\Bbb{E}\left[ \sigma^2 \delta(S_T-K) \right]}{\Bbb{E}\left[ \delta(S_T-K) \right]} \end{align} $$