契約曲線和帕累托邊界
考慮一個有兩個代理的交換經濟。每個代理 $ i \in {1,2} $ 派生效用 $ u^i(x_1,x_2) \in \mathbb R $ 通過消費 $ (x_1,x_2) \in \mathbb R_+^2 $ . 讓 $ u_j^i(x_1,x_2) = \partial u^i(x_1,x_2) / \partial x_j $ 為了 $ (i,j) \in {1,2}^2 $ . 有效消費束集由下式給出 $$ \begin{align} C = \left{(x_1,x_2) \in \mathbb R_+^2 ~ \bigg| ~ \frac{u_1^1(x_1,x_2)}{u_2^1(x_1,x_2)} = \frac{u_1^2(x_1,x_2)}{u_2^2(x_1,x_2)}\right} \end{align} $$ 假設函式 $ x_2^c :\mathbb R_+ \to \mathbb R_+ $ 解決 $$ \begin{align} \frac{u_1^1(x_1,x_2^c(x_1))}{u_2^1(x_1,x_2^c(x_1))} = \frac{u_1^2(x_1,x_2^c(x_1))}{u_2^2(x_1,x_2^c(x_1))} \end{align} $$ 合約曲線是圖表 $ \mathcal G(x_2^c) = {(x_1,x_2^c(x_1)) \mid x_1 \in \mathbb R_+} $ . 讓 $ \overline u^i(x_1) = u^i(x_1,x_2^c(x_1)) $ . 帕累托邊界現在由以下效用分配給出 $$ \begin{align} P = {(\overline u^1(x_1), \overline u^2(x_1)) \mid x_1 \in \mathbb R_+} \subset \mathbb R^2. \end{align} $$
假設Parento邊界向下傾斜wrt $ x_1 $ 這樣 $$ \begin{align} \frac{\overline u_1^2(x_1)}{\overline u_1^1(x_1)} < 0. \end{align} $$
問:必須滿足什麼條件才能使帕累托邊界是凹的?
我特別想知道以下條件是否足夠: $$ \begin{align} \frac{\overline u_{11}^2(x_1)}{\overline u_{11}^1(x_1)} < 0. \end{align} $$
讓我們假設所有這些函式都存在並且是可微的。此外,讓我們表示函式的逆 $ \overline u^1(x_1) $ 經過 $ x_1\left(\overline u^1\right) $ .
請注意,對於任何可逆函式 $ f $ 我們有 $$ \left.\frac{\text{d} f(x)}{\text{d} x}\right|{x=x_0} = \frac{1}{\left.\frac{\text{d} f^{-1}(y)}{\text{d} y}\right|{y=f(x_0)}}. $$ 在我們的例子中,這意味著(用稍微簡化的符號) $$ \frac{\text{d} x_1(\overline u^1)}{\text{d} \overline u^1} = \frac{1}{\frac{\text{d} \overline u^1(x_1)}{\text{d} x_1}}. $$ 我們將通過編寫進一步簡化符號 $$ \overline u{^i}’ = \frac{\text{d} \overline u^i(x_1)}{\text{d} x_1}. $$ 我們將通過附加類似的方式來表示二階導數 $ ’’ $ .
問題是在什麼條件下 $$ \overline u^2\left(x_1\left(\overline u^1\right)\right) $$ 是凹進去的 $ \overline u^1 $ . 當然,這取決於 $$ \frac{\text{d}^2 \overline u^2\left(x_1\left(\overline u^1\right)\right)}{\text{d} \overline {u}{^1}^2}. $$ 區分 $$ \begin{align*} \frac{\text{d} \overline u^2\left(x_1\left(\overline u^1\right)\right)}{\text{d} \overline {u}^1} & = \frac{\text{d} x_1(\overline u^1)}{\text{d} \overline u^1} \frac{\text{d} \overline u^2(x_1)}{\text{d} x_1}
\frac{1}{\overline u{^1}’ }\overline u{^2}'
\frac{\overline u{^2}’}{\overline u{^1}’ }. \end{align*} $$ 更進一步 $$ \begin{align*} \frac{\text{d}^2 \overline u^2\left(x_1\left(\overline u^1\right)\right)}{\text{d} \overline {u}{^1}^2} & = \frac{ \frac{1}{\overline u{^1}’ }\overline u{^2}^{’’} \overline u{^1}'
\overline u{^2}’\frac{1}{\overline u{^1}’ }\overline u{^1}^{’’} } {\left(\overline u{^1}’\right)^2}. \end{align*} $$ 這意味著帕累托邊界是凹的,當 $$ \begin{align*} \frac{\text{d}^2 \overline u^2\left(x_1\left(\overline u^1\right)\right)}{\text{d} \overline {u}{^1}^2} & \leq 0 \ \ \frac{ \frac{1}{\overline u{^1}’ }\overline u{^2}^{’’} \overline u{^1}'
\overline u{^2}’\frac{1}{\overline u{^1}’ }\overline u{^1}^{’’} } {\left(\overline u{^1}’\right)^2} & \leq 0 \ \ \overline u{^2}^{’’} & \leq \frac{\overline u{^2}’}{\overline u{^1}’ }\overline u{^1}^{’’} \end{align*} $$ 對全部 $ x_1 $ .