數值法

有限差分隱式方案

  • June 14, 2018

我正在嘗試使用隱式 FD 方案以數值方式求解以下 PDE:

$$ \begin{equation} \frac{\sigma_s^2}{2}\frac{\partial^2 V}{\partial S^2} + \rho \sigma_S \sigma_\alpha\frac{\partial^2 V}{\partial S \partial \alpha} + \frac{\sigma_\alpha^2}{2}\frac{\partial^2 V}{\partial \alpha^2} + \mu_s \frac{\partial V}{\partial S} + \mu_\alpha \frac{\partial V}{\partial \alpha} + \frac{\partial V}{\partial t} - rV \end{equation} $$ 這提出了以下兩個我還沒有找到的問題:

  • 當用 FD 近似代替導數時,是 $ rV $ 取而代之 $ rV_{i,j,k} $ 或者 $ rV_{i,j,k+1} $ ?
  • 當以以下形式重寫 FD 公式時 $ V_{k}=AV_{k+1} - C $ , 是需要計算的邊界值 $ C $ 摘自 $ V_{k+1} $ 或者 $ V_k $ ?

當使用(歐拉)隱式方案時,在前一個時間級別(您已經擁有解決方案的時間級別)採取的唯一事情是 $ V_{i,j,k} $ 這來自時間導數。離散方程中的所有其他內容都在下一個時間級別進行。所以,對於你的兩個問題,都是k+1。

引用自:https://quant.stackexchange.com/questions/40233