對稱機率和主觀回報
讓 $ {Z_k}_{k=1}^{N} $ 是具有以下分佈的 iid 隨機變數序列
$$ Z_k = \begin{cases} \alpha &\text{with probability} \ \hat{\pi}\ -\beta &\text{with probability} \ 1 - \hat{\pi} \end{cases} $$ 然後我們有$$ \ln(S_T) = ln(S_0) + (r - \frac{\sigma^2}{2})T + \sigma\sqrt{T}\frac{1}{\sqrt{N}}\sum_{k=1}^{N}Z_k $$ 二項式模型收斂到 Black-Scholes 模型的唯一標準是隨機變數 $ Z_k $ , $ k = 1,\ldots,N $ 必須滿足 $ \hat{\mathbb{E}}[Z_1] = o(\delta) $ 和 $ \hat{\mathbb{E}}[Z_1^2] = 1 + o(1) $ IE$$ \text{If} \ \hat{\mathbb{E}}[Z_1] = o(\delta), \ \text{and} \ \hat{\mathbb{E}}[Z_1^2] = 1+o(1), \ \text{then} $$ $$ \frac{1}{\sqrt{N}}\sum_{k=1}^{N}Z_k \ \text{converges to} \ \mathcal{N}(0,1) \ \text{weakly} $$ 對稱機率:
$$ u = \exp(\delta(r - \frac{\sigma^2}{2}) + \sqrt{\delta}\sigma), l = \exp(\delta(r - \frac{\sigma^2}{2}) - \sqrt{\delta}\sigma) , \ \text{and} \ \ R = r\delta $$ 然後;$$ \hat{\pi}_u = \hat{\pi}_l = \frac{1}{2} $$ 主觀回報:
$$ u = \exp(\delta\nu + \sqrt{\delta}\sigma), l = \exp(\delta\nu - \sqrt{\delta}\sigma), \ \text{and} \ \ R = r\delta $$ 然後;$$ \hat{\pi}_u = \frac{1}{2}\left(1 + \sqrt{\delta}\frac{r - \nu - \frac{1}{2}\sigma^2}{\sigma}\right) \ \ \text{and} \ \ \hat{\pi}_l = \frac{1}{2}\left(1 - \sqrt{\delta}\frac{r - \nu - \frac{1}{2}\sigma^2}{\sigma}\right) $$
節目
$$ \hat{\mathbb{E}}[Z_1] = o(\delta), \ \ \text{and} \ \ \hat{\mathbb{E}}[Z_1^2] = 1 + o(1) $$在以下情況下。 a.) 對稱機率
b.) 主觀回報
嘗試的解決方案 a.)
$$ E[Z_1] = 1\times \frac{1}{2} - 1\times\frac{1}{2} = 0 $$和$$ E[Z_1^2] = 1^2\times\frac{1}{2} + (-1)^2\frac{1}{2} = 1 $$
你的說法很不准確。
見https://en.wikipedia.org/wiki/Central_limit_theorem
和 :
- $ (Z_k)_{k=1\dots n} $ 與 $ \mathbb{E}\left[Z_1\right] = \mu $ 和 $ \text{Var}(Z_1)=\mathbb{E}\left[Z_1^2\right] -\mu^2=\sigma^2 $
- 並通過表示 $ \mathcal{N}(m,v) $ 均值的正態變異數 $ m $ 和變異數 $ v $
我們有 :
$$ \text{weak}\lim_{N\to\infty}\frac{1}{\sqrt{N}}\sum_{i=1}^n(Z_k-\mu) = \mathcal{N}(0,\sigma^2) $$ 或者 $$ \text{weak}\lim_{N\to\infty}\frac{1}{\sigma\sqrt{N}}\sum_{i=1}^n(Z_k-\mu) = \mathcal{N}(0,1) $$ 您可以直接將其應用於您的問題