數理經濟學

時間序列中的遞歸替換

  • January 11, 2021

希望得到一些關於遞歸替換問題的指導,我們有 AR 模型:

$$ y_t = \alpha +\theta_1y_{t-1}+ u_t $$

$$ E(y_t)= \mu_t $$

在哪裡:

$$ \mu_t = (1+\theta_1 + \theta_1^2+..+\theta^{t-1})\alpha+\theta^ty_0 $$

通過遞歸替換,我們得到:

$$ y_t = \mu_t +(u_t +\theta_1u_{t-1}+\theta^2u_{t-2}+…+\theta^{t-1}u_1) $$

隨後:

$$ E[y_t] = E[\mu_t]+ E[(u_t +\theta_1u_{t-1}+\theta^2u_{t-2}+…+\theta^{t-1}u_1)]= \mu_t $$

有人能夠解釋如何從第 2、3、4 行獲得有關遞歸替換的步驟嗎?

$$ \begin{align}y_t &= \alpha + \theta_1y_{t-1}+u_t \ &= \alpha+\theta_1(\alpha + \theta_1y_{t-2}+u_{t-1}) + u_{t} \ &= (1+\theta_1) \alpha + \theta_1^2y_{t-2} + \theta_1u_{t-1}+u_{t} \ &= (1+\theta_1) \alpha + \theta_1^2(\alpha + \theta_1y_{t-3}+u_{t-3}) + \theta_1u_{t-1}+u_{t} \ &= (1+\theta_1 + \theta_1^2) \alpha + \theta_1^3y_{t-3} + \theta_1^3u_{t-3}+\theta_1u_{t-1}+u_{t} \ &= \dots \ &= (1+\theta_1+\dots+\theta_1^{t-1})\alpha+\theta_1^ty_0+\theta_1^{t}u_{0}+\dots+\theta_1u_{t-1}+u_{t} \ &= \mu_t+\theta_1^{t}u_{0}+\dots+\theta_1u_{t-1}+u_{t} \end{align} $$

因此

$$ E[y_t] = E[\mu_t]+\theta_1^{t}E[u_{0}]+\dots+\theta_1E[u_{t-1}]+E[u_{t}] = E[\mu_t] $$自從 $ E[u_{t}] = 0\ \forall\ t $

最後,$$ E[\mu_t] = (1+\theta_1+\dots+\theta_1^{t-1})\alpha+\theta_1^tE[y_0] = (1+\theta_1+\dots+\theta_1^{t-1})\alpha+\theta_1^ty_0 = \mu_t $$我們假設 $ y_0 $ 是非隨機的。

引用自:https://economics.stackexchange.com/questions/42050