期權

如何推導帶股息的布萊克-斯科爾斯方程?

  • September 23, 2019

問題:沒有股息的布萊克-斯科爾斯方程由下式給出 $$ \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2S^2\frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} -rV = 0. $$ (我試圖在一篇文章中推導出方程。)

如果我們假設’與股息率 $ D $ ‘,則 Black-Scholes 方程變為 $$ \frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2S^2\frac{\partial^2 V}{\partial S^2} + (r-D)S \frac{\partial V}{\partial S} -rV = 0. $$ 如何得出這個?

通過向後工作並假設我之前的文章的推導,我們應該有 $$ d\Pi = \frac{\partial V}{\partial t} dt + \frac{\partial V}{\partial S} dS + \frac{1}{2}\sigma^2S^2\frac{\partial^2 V}{\partial S^2}dt - \Delta S - D\Delta Sdt. $$ 但我不明白為什麼我們可以在 $ d\Pi. $

我們假設股票價格過程 $ {S_t,,t>0} $ 滿足,在真實世界的機率測度下 $ P $ , 形式為 SDE $$ \begin{align*} dS_t=S_t\big((\mu-q)dt+\sigma dW_t\big), \end{align*} $$ 在哪裡 $ {W_t, , t >0} $ 是標準布朗運動。在這裡,我們需要考慮總回報資產 $ e^{qt}S_t $ ,即具有股息支付的資產投資於同一標的股票。我們考慮以下形式的本地無風險自籌資金組合 $$ \begin{align*} \pi_t =\Delta_t^1 \big(e^{qt}S_t\big) + \Delta_t^2 V_t, \end{align*} $$ 在哪裡 $ V_t $ 是期權價格。然後, $$ \begin{align*} d\pi_t &= \Delta_t^1 d\big(e^{qt}S_t\big) + \Delta_t^2 dV_t\ &= \Delta_t^1 e^{qt}\big(q S_t dt + dS_t \big) + \Delta_t^2\left(\frac{\partial V}{\partial t}dt + \frac{\partial V}{\partial S}dS_t + \frac{1}{2}\frac{\partial^2 V}{\partial S^2} \sigma^2S_t^2 dt\right)\ &=\left[\mu\Delta_t^1 e^{qt} S_t + \Delta_t^2\left(\frac{\partial V}{\partial t} + (\mu-q) S_t \frac{\partial V}{\partial S} + \frac{1}{2}\frac{\partial^2 V}{\partial S^2} \sigma^2S_t^2 \right)\right]dt \ &\qquad\qquad\qquad\qquad\qquad\quad + \left(\sigma\Delta_t^1 e^{qt}S_t + \sigma \Delta_t^2 S_t \frac{\partial V}{\partial S}\right)dW_t. \end{align*} $$ 自從 $ \pi_t $ 是局部無風險的,我們假設 $ \pi_t $ 賺取無風險利率 $ r $ , 那是, $$ \begin{align*} d\pi_t = r \pi_t dt, \end{align*} $$ 然後, $$ \begin{align*} &\left[\mu \Delta_t^1 e^{qt} S_t + \Delta_t^2\left(\frac{\partial V}{\partial t} + (\mu-q) S_t \frac{\partial V}{\partial S} + \frac{1}{2}\frac{\partial^2 V}{\partial S^2} \sigma^2S_t^2 \right)\right]dt \ &\qquad\qquad\qquad\qquad\qquad + \left(\sigma\Delta_t^1 e^{qt} S_t + \sigma \Delta_t^2 S_t \frac{\partial V}{\partial S}\right)dW_t= r \pi_t dt. \end{align*} $$ 最後, $$ \begin{align*} \sigma\Delta_t^1 e^{qt}S_t + \sigma \Delta_t^2 S_t \frac{\partial V}{\partial S}=0, \tag{1} \end{align*} $$ 和 $$ \begin{align*} \mu e^{qt} \Delta_t^1 S_t + \Delta_t^2\left(\frac{\partial V}{\partial t} + (\mu-q) S_t \frac{\partial V}{\partial S} + \frac{1}{2}\frac{\partial^2 V}{\partial S^2} \sigma^2S_t^2 \right) = r(\Delta_t^1 e^{qt}S_t + \Delta_t^2 V_t). \end{align*} $$ 從 $ (1) $ , $$ \begin{align*} \Delta_t^1 = -e^{-qt} \Delta_t^2 \frac{\partial V}{\partial S}. \end{align*} $$ 然後, $$ \begin{align*} -\mu \Delta_t^2 S_t \frac{\partial V}{\partial S}+ \Delta_t^2\left(\frac{\partial V}{\partial t} + (\mu-q) S_t \frac{\partial V}{\partial S} + \frac{1}{2}\frac{\partial^2 V}{\partial S^2} \sigma^2S_t^2 \right) = r\Big(-\Delta_t^2 S_t\frac{\partial V}{\partial S} + \Delta_t^2 V_t\Big), \end{align*} $$ 或者 $$ \begin{align*} \Delta_t^2\left(\frac{\partial V}{\partial t} -q S_t \frac{\partial V}{\partial S} + \frac{1}{2}\frac{\partial^2 V}{\partial S^2} \sigma^2S_t^2\right) &= r\Delta_t^2\Big(-\frac{\partial V}{\partial S} S_t + V_t\Big). \tag{2} \end{align*} $$ 取消期限 $ \Delta_t^2 $ 從兩側 $ (2) $ , 我們得到以下形式的 Black-Scholes 方程 $$ \begin{align*} \frac{\partial V}{\partial t} + (r-q) S_t \frac{\partial V}{\partial S} + \frac{1}{2}\frac{\partial^2 V}{\partial S^2} \sigma^2S_t^2 -rV = 0. \end{align*} $$

引用自:https://quant.stackexchange.com/questions/48856