蒙地卡羅
我的monte carlo pricer的分歧問題…
我正在嘗試使用 Monte Carlo 實現一個普通的歐洲期權定價器,並將其結果與 BS 分析公式的結果進行比較。
我注意到隨著模擬次數的增加(從 100 萬到 1000 萬),MC 結果開始出現差異。
請注意,我故意只使用一種變異數減少技術:對立變數。我希望僅僅通過增加模擬次數,我就能設法提高精度。
誰能給我一些線索或指示,說明為什麼我的結果會出現差異?
下麵包含的是定價器的 C# 程式碼:
using System; using System.Threading.Tasks; using MathNet.Numerics.Distributions; using MathNet.Numerics.Random; namespace MonteCarlo { class VanillaEuropeanCallMonteCarlo { static void Main(string[] args) { const int NUM_SIMULATIONS = 10000000; const decimal strike = 50m; const decimal initialStockPrice = 52m; const decimal volatility = 0.2m; const decimal riskFreeRate = 0.05m; const decimal maturity = 0.5m; Normal n = new Normal(); n.RandomSource = new MersenneTwister(); VanillaEuropeanCallMonteCarlo vanillaCallMonteCarlo = new VanillaEuropeanCallMonteCarlo(); Task<decimal>[] simulations = new Task<decimal>[NUM_SIMULATIONS]; for (int i = 0; i < simulations.Length; i++) { simulations[i] = new Task<decimal>(() => vanillaCallMonteCarlo.RunMonteCarloSimulation(strike, initialStockPrice, volatility, riskFreeRate, maturity, n)); simulations[i].Start(); } Task.WaitAll(simulations); decimal total = 0m; for (int i = 0; i < simulations.Length; i++) { total += simulations[i].Result; } decimal callPrice = (decimal)(Math.Exp((double)(-riskFreeRate * maturity)) * (double)total / (NUM_SIMULATIONS * 2)); Console.WriteLine("Call Price: " + callPrice); Console.WriteLine("Difference: " + Math.Abs(callPrice - 4.744741008m)); } decimal RunMonteCarloSimulation(decimal strike, decimal initialStockPrice, decimal volatility, decimal riskFreeRate, decimal maturity, Normal n) { decimal randGaussian = (decimal)n.Sample(); decimal endStockPriceA = initialStockPrice * (decimal)Math.Exp((double)((riskFreeRate - (decimal)(0.5 * Math.Pow((double)volatility, 2))) * maturity + volatility * (decimal)Math.Sqrt((double)maturity) * randGaussian)); decimal endStockPriceB = initialStockPrice * (decimal)Math.Exp((double)((riskFreeRate - (decimal)(0.5 * Math.Pow((double)volatility, 2))) * maturity + volatility * (decimal)Math.Sqrt((double)maturity) * (-randGaussian))); decimal sumPayoffs = (decimal)(Math.Max(0, endStockPriceA - strike) + Math.Max(0, endStockPriceB - strike)); return sumPayoffs; } } }
這與您之前的問題本質上是相同的問題,並且問題仍然相同:可變性不會僅僅因為您使用 1 億次抽獎而消失。比較結果的分佈 $ N $ 蒙地卡羅模擬 $ n_1 = 1,000,000 $ 與那些 $ n_2 = 10,000,000 $ . 您會看到減少,但這並不意味著每次執行都會得到更嚴格的答案。