零息債券計算
我得到以下遠期匯率動態 $ df(t,u)=\frac{\partial}{\partial u}(\frac{\sigma^2}{2})dt-\frac{\partial}{\partial u}\sigma dW $ 並想計算 ZCB 的動態 $ p $ 通過下面的計算。第二個等式顯然是伊藤引理,但等式三和四完全讓我失望,有人能看到發生了什麼嗎?
快照中的符號非常混亂。我更喜歡如下進行。
讓 $ X_t = -\int_t^T f(t, u)du $ . 注意 $$ \begin{align*} f(t, u) - f(0, u) = \frac{\partial }{\partial u}\left(\int_0^t \frac{\sigma^2(s, u)}{2} ds - \int_0^t \sigma(s, u) d W_s \right). \end{align*} $$ 然後 $$ \begin{align*} r_t = f(t, t) = f(0, t) + \frac{\partial }{\partial u}\left(\int_0^t \frac{\sigma^2(s, u)}{2} ds - \int_0^t \sigma(s, u) d W_s \right)\Big|{u=t}. \end{align*} $$ 而且, $$ \begin{align*} \int_t^T f(t, u)du - \int_t^T f(0, u)du &= \left(\int_0^t \frac{\sigma^2(s, T)}{2} ds - \int_0^t \sigma(s, T) d W_s \right) \ &\qquad -\left(\int_0^t \frac{\sigma^2(s, t)}{2} ds - \int_0^t \sigma(s, t) d W_s \right). \end{align*} $$ 那是, $$ \begin{align*} X_t &= - \int_t^T f(0, u)du + \left(\int_0^t \frac{\sigma^2(s, t)}{2} ds - \int_0^t \sigma(s, t) d W_s \right) \ &\qquad\qquad\qquad\qquad - \left(\int_0^t \frac{\sigma^2(s, T)}{2} ds - \int_0^t \sigma(s, T) d W_s \right). \end{align*} $$ 最後, $$ \begin{align*} dX_t &= f(0, t) dt + \frac{\sigma^2(t, t)}{2} dt - \sigma(t, t) d W_t \ &\qquad + \frac{\partial }{\partial u}\left(\int_0^t \frac{\sigma^2(s, u)}{2} ds - \int_0^t \sigma(s, u) d W_s \right)\Big|{u=t} dt -\frac{\sigma^2(t, T)}{2} dt + \sigma(t, T) d W_t\ &= r_t dt -\frac{\sigma^2(t, T)}{2} dt + \sigma(t, T) d W_t. \end{align*} $$ 所以, $$ \begin{align*} dP(t, T) &= d\big(e^{X_t} \big)\ &=P(t, T)\Big(dX_t + \frac{1}{2} d\langle X, X\rangle_t \Big)\ &=P(t, T)\big(r_t dt + \sigma(t, T) d W_t \big). \end{align*} $$