證明如果債券以折價交易,其到期收益率將超過其票面利率
有人可以給我這個陳述的數學證明嗎?
如果債券以折價交易,其到期收益率將超過其票面利率。
如果債券以折價交易, $ P<FV $ .
$ \displaystyle\implies CPN\times\frac{1}{YTM_n}\left(1-\frac{1}{(1+YTM_n)^n}\right)+\frac{FV}{(1+YTM_n)^n}<FV $
$ \displaystyle\implies CPN\times\frac{1}{YTM_n}\left(1-\frac{1}{(1+YTM_n)^n}\right)<FV-\frac{FV}{(1+YTM_n)^n} $
$ \displaystyle\implies CPN\times\frac{1}{YTM_n}\left(1-\frac{1}{(1+YTM_n)^n}\right)<FV\left(1-\frac{1}{(1+YTM_n)^n}\right) $ ————–(1)
$ \displaystyle YTM_n>0\implies 1+YTM_n>1\implies(1+YTM_n)^n>1\implies\frac{1}{(1+YTM_n)^n}<1\implies 1-\frac{1}{(1+YTM_n)^n}>0 $
因此,我們將(1)的兩邊除以 $ \displaystyle 1-\frac{1}{(1+YTM_n)^n} $ 要得到
$ \displaystyle CPN\times\frac{1}{YTM_n}<FV $
$ \displaystyle\implies\frac{CPN}{FV}<YTM_n $
$ \displaystyle\implies r<YTM_n $
$ \displaystyle\implies YTM_n>r $
量子點