這個二次方是夏普比率嗎?
我正在閱讀 Merton 的An Analytic Derivation of the Efficient Portfolio Frontier。在第四節中,他推導出了無風險資產的有效邊界。讓 $ \mathbf{w} $ 是投資組合權重的向量,讓 $ w_f $ 是無風險資產的權重 $ r_f $ . 然後
$$ \mathbf{w}^{\top} \mathbf{1} + w_f = 1 \tag{1} $$
通過施工。優化問題是
$$ \begin{aligned} \min_{\mathbf{w}} &&& \mathbf{w}^{\top} \boldsymbol{\Sigma} \mathbf{w}, \ \text{subject to} &&& \mathbf{w}^{\top} \tilde{\boldsymbol{\mu}} = \tilde{\mu}_p, \end{aligned} \tag{2} $$
在哪裡
$$ \begin{aligned} \tilde{\boldsymbol{\mu}} &\triangleq \boldsymbol{\mu} - r_f \mathbf{1}, \ \tilde{\mu}_p &\triangleq \mu_p - r_f, \end{aligned} \tag{3} $$
和在哪裡 $ \boldsymbol{\mu} $ 是預期收益的向量,並且 $ \mu_p $ 是投資組合的回報。我可以寫下拉格朗日函式並推導出一階條件:
$$ \begin{aligned} \nabla_{\mathbf{w}} \mathcal{L} &= 2 \boldsymbol{\Sigma} \mathbf{w} + \lambda \tilde{\boldsymbol{\mu}} = \mathbf{0}, \ \frac{\partial}{\partial \lambda} \mathcal{L} &= \mathbf{w}^{\top} \tilde{\boldsymbol{\mu}} - \tilde{\mu}_p = 0. \end{aligned} \tag{4} $$
最後,我可以得出相同的最優權重
$$ \mathbf{w} = \tilde{\mu}_p \left( \frac{\boldsymbol{\Sigma}^{-1} \tilde{\boldsymbol{\mu}}}{\tilde{\boldsymbol{\mu}}^{\top} \boldsymbol{\Sigma}^{-1} \tilde{\boldsymbol{\mu}}} \right) \tag{5} $$
以及與默頓相同的二次型方程,他的方程 35:
$$ \begin{aligned} | \mu_p - r_f | &= \sigma_p \sqrt{(\boldsymbol{\mu} - r_f \mathbf{1})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu} - r_f \mathbf{1})} \ &\Downarrow \ \mu_p &= r_f \pm \sigma_p \sqrt{(\boldsymbol{\mu} - r_f \mathbf{1})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu} - r_f \mathbf{1})}. \end{aligned} \tag{6} $$
這顯然是一個分段函式,其中每一半都是線性函式。我假設上半部分是人們所說的資本市場線,因為自變數是 $ \mu_p $ ,因變數是 $ \sigma_p $ , 和 $ y $ -攔截是 $ r_f $ . 但是,這是我的問題,斜率不是夏普比率:
$$ \frac{\mu_p - r_f}{\sigma_p} \stackrel{???}{\neq} \sqrt{(\boldsymbol{\mu} - r_f \mathbf{1})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu} - r_f \mathbf{1})}. \tag{7} $$
我錯過了什麼?
也許這很有幫助。查看我對相關問題的回答,以更好地遵循我的符號。
$$ \begin{align*}a &\equiv \sum_i \sum_j V_{ij} \mu_i \quad \quad \text{(in Merton paper)}\ &= \boldsymbol{1}‘V \boldsymbol{\mu} \quad \quad \text{(in vector notation)} \ &= s_{1u} \quad\quad \text{my preferred shorthand} \ \ b &\equiv \sum_i \sum_j V_{ij} \mu_j \mu_k\ &= \boldsymbol{\mu}‘V \boldsymbol{\mu} \quad \quad \text{(in vector notation)} \ &= s_{uu} \quad\quad \text{my preferred shorthand}\ \ c &\equiv \sum_i \sum_j V_{ij} \ &= \boldsymbol{1}‘V \boldsymbol{1} \quad \quad \text{(in vector notation)}\ &= s_{11} \quad\quad \text{my preferred shorthand} \end{align*} $$
$$ S = \begin{bmatrix} b & a \ a & c \end{bmatrix} $$
$$ \mathbf{w}^* = \frac{\Sigma^{-1} \left( \boldsymbol{\mu} - r_f\right)}{\mathbf{1}’ \Sigma^{-1} \left( \boldsymbol{\mu} - r_f \right)} $$
$$ \mathbf{w^*}’\boldsymbol{\mu} = \frac{s_{uu} - r_f s_{1u}}{s_{1u} - r_fs_{11}} $$
$$ \mathbf{w^*}’\boldsymbol{\mu} - r_f = \frac{s_{uu} - 2r_fs_{1u} + r_f^2s_{11}}{s_{1u} - r_f s_{11}} $$
$$ \begin{align*} \mathbf{w^}’\Sigma \mathbf{w^} &= \frac{ \left( \boldsymbol{\mu} - r_f \mathbf{1}\right)’\Sigma^{-1} \left( \boldsymbol{\mu} - r_f \mathbf{1}\right) }{\left(s_{1u} - r_fs_{11} \right)^2} \ &= \frac{s_{uu} - 2r_f s_{1u} + r_f^2 s_{11} }{\left(s_{1u} - r_fs_{11} \right)^2} \end{align*} $$ 最後: $$ \frac{\mathbf{w^}’\boldsymbol{\mu} - r_f}{\sqrt{\mathbf{w^}’\Sigma \mathbf{w^*}} } = \sqrt{s_{uu} - 2r_f s_{1u} + r_f^2 s_{11}} $$
這是您在 (7) 中的最後一行。