HJM 模型 Baxter Rennie:使用 Ito 區分貼現資產價格
來自 Baxter 和 Rennie 第 145 頁:
$ Z(t,T) = exp(\int_{0}^{t}\Sigma(s,T)dW_s - \int_{0}^{T}f(o,u)du - \int_{0}^{t}\int_{s}^{T}\alpha(s,u)duds) $
在哪裡 $ \Sigma(t,T) = \int_{t}^{T}\sigma(t,u)du $
如何從這裡到 $ d_tZ(t,T) = Z(t,T)(\Sigma(t,T)dW_t + (\frac{1}{2}\Sigma^2(t,T) - \int_{0}^{T}\alpha(t,u)du)dt) $
我已經嘗試過(基於答案Baxter & Rennie HJM: 區分 Ito 積分):
$ Z_t = exp(-X_t) $ , 在哪裡 $ X_t = \int_{0}^{t}\int_{s}^{T}\sigma(s,u)dudW_s + \int_{0}^{T}f(0,u)du + \int_{0}^{t}\int_{s}^{T}\alpha(s,u)duds $
$ X_t = f(t,W_t) $
所以, $ dX_t = \frac{\partial}{\partial{t}}f(t,W_t)dt + \frac{\partial}{\partial{W_t}}f(t,W_t)dW_t + \frac{1}{2}\frac{\partial^2}{\partial{W_t}^2}f(t,W_t)d<W,W>_t $
計算 $ \frac{\partial}{\partial{t}}f(t,W_t)dt $ :
$ \frac{\partial}{\partial{t}}(\int_{0}^{T}f(0,u)du) = 0 $
$ \frac{\partial}{\partial{t}}(\int_{0}^{t}\int_{s}^{T}\sigma(s,u)dudW_s) = 0 $
$ \frac{\partial}{\partial{t}}(\int_{0}^{t}\int_{s}^{T}\alpha(s,u)duds) = \frac{\partial}{\partial{t}}(\int_{0}^{t}\widetilde{\alpha(s,u)}ds) $ , 在哪裡 $ \widetilde{\alpha(s,T)} = \int_{0}^{T}\alpha(s,u)du $
$ \frac{\partial}{\partial{t}}(\int_{0}^{t}\widetilde{\alpha(s,u)}ds = \widetilde{\alpha(t,T)}\frac{\partial}{\partial{t}}t + \widetilde{\alpha(0,T)}\frac{\partial}{\partial{t}}0 + \int_{0}^{t}\frac{\partial}{\partial{t}}\widetilde{\alpha(s,T)}ds $
$ \frac{\partial}{\partial{t}}(\int_{0}^{t}\widetilde{\alpha(s,u)}ds = \widetilde{\alpha(t,T)} + 0 + 0 $
所以
$ \frac{\partial}{\partial{t}}f(t,W_t)dt = \widetilde{\alpha(t,T)}dt = \int_{t}^{T}\alpha(t,u)dudt $
計算 $ \frac{\partial}{\partial{W_t}}f(t,W_t)dW_t $ :
$ \frac{\partial}{\partial{W_t}}(\int_{0}^{T}f(0,u)du) = 0 $
$ \frac{\partial}{\partial{W_t}}(\int_{0}^{t}\int_{s}^{T}\alpha(s,u)duds) = 0 $
$ \frac{\partial}{\partial{W_t}}(\int_{0}^{t}\int_{s}^{T}\sigma(s,u)dudW_s) $ : 我不知道如何計算這個術語。我不確定我們是否可以在這裡應用萊布尼茨積分規則(https://en.wikipedia.org/wiki/Leibniz_integral_rule),即使這樣做,值也會為零。任何幫助表示讚賞。
這是我第一次回答,所以請多多包涵。提前為糟糕的格式道歉。另外僅供參考,您的文章中有一些拼寫錯誤,可能會使事情變得更加混亂。
這裡的問題是 $ \int_{0}^{t}\int_{s}^{T}\sigma(s,u)dudW_s $ 本身是一個隨機過程,並試圖取其相對於時間的偏導數(您設置為 $ 0 $ 在您的問題中,這導致了後來的問題)通過執行以下操作來避免:
讓 $ Q(t,x) = -x + \int_{0}^{T}f(0,u)du + \int_{0}^{t}\int_{s}^{T}\alpha(s,u)duds $ , 然後讓 $ X_t = \int_{0}^{t}\int_{s}^{T}\sigma(s,u)dudW_s $ ,請注意,這與您的不同 $ X_t $ .
然後我們就有了 $ Q(t,X_t) $ 是這樣的 $ Z_t = exp(-Q(t,X_t)) $ . 這也使事情變得更容易了,因為在取 的偏導數時 $ Q(t,x) $ 我們將有 $ \partial_xQ(t,x) = -1 $ 和 $ \partial_{xx}Q(t,x) = 0 $
所以應用伊藤引理,我們計算 $$ \begin{align} dQ(t,X_t) = & \partial_tQ(t,X_t)dt + \partial_xQ(t,X_t)dX_t + \frac{1}{2}\partial_{xx}Q(t,X_t)d\langle X_t,X_t \rangle \ & = \int_{t}^{T}\alpha(t,u)dudt - \int_{t}^{T}\sigma(t,u)dudW_t \end{align} $$
其中Ito積分的定義用於計算 $ dX_t = d\int_{0}^{t}\int_{s}^{T}\sigma(s,u)dudW_s = \int_{t}^{T}\sigma(t,u)dudW_t $
現在我們使用伊藤引理 $ Z_t = f(Q(t,X_t)) = exp(-Q(t,X_t)) $ (所以 $ f = exp(-x) $ ).
注意 $ \partial_tf = 0 $ , $ \partial_xf = -exp(-x) = -f $ , 和 $ \partial_{xx}f = exp(-x) = f $ .
二次變化也計算為: $$ \begin{align} d \langle Q(t,X_t), Q(t,X_t) \rangle & = dQ(t,X_t)dQ(t,X_t) \ & = (\int_{t}^{T}\alpha(t,u)dudt - \int_{t}^{T}\sigma(t,u)dudW_t) * (\int_{t}^{T}\alpha(t,u)dudt - \int_{t}^{T}\sigma(t,u)dudW_t) \ & = (\int_{t}^{T}\sigma(t,u)dudW_t) * (\int_{t}^{T}\sigma(t,u)dudW_t) \ & = (\int_{t}^{T}\sigma(t,u)du)^2dW_tdW_t \ & = (\int_{t}^{T}\sigma(t,u)du)^2dt \end{align} $$
所以我們可以開始計算 $ dZ_t = dZ(t,T) $ : $$ \begin{align} dZ_t = & \partial_tf(Q(t,X_t))dt + \partial_xf(Q(t,X_t))dQ(t,X_t) + \frac{1}{2}\partial_{xx}f(Q(t,X_t))d \langle Q(t,X_t), Q(t,X_t) \rangle \ & = -Z_tdQ(t,X_t) + \frac{1}{2}Z_td \langle Q(t,X_t), Q(t,X_t) \rangle \ & = Z_t(-dQ(t,X_t) + \frac{1}{2}d \langle Q(t,X_t), Q(t,X_t) \rangle \ & = Z_t(-\int_{t}^{T}\alpha(t,u)dudt + \int_{t}^{T}\sigma(t,u)dudW_t + \frac{1}{2}(\int_{t}^{T}\sigma(t,u)du)^2dt) \end{align} $$
最後使用 $ \Sigma(t,T) = \int_{t}^{T}\sigma(t,u)du $ , 我們有 $$ \begin{align} d_tZ(t,T) = Z(t,T)(\Sigma(t,T)dW_t + (\frac{1}{2}\Sigma^2(t,T) - \int_{t}^{T}\alpha(t,u)du)dt) \end{align} $$
注意第三項的下限是 $ t $ 不像你的文章。