隨機過程

非對稱隨機遊走/證明噸:=inf{n:Xn=乙}噸:=資訊{n:Xn=b}T:= inf{n: X_n = b}是一個{Fn}n∈N{Fn}n∈ñ{mathscr F_n}_{n in mathbb N}- 停止時間

  • December 7, 2015

給定隨機變數 $ Y_1, Y_2, … \stackrel{iid}{\sim} P(Y_i = 1) = p = 1 - q = 1 - P(Y_i = -1) $ 在哪裡 $ p > q $ 在過濾的機率空間中 $ (\Omega, \mathscr F, {\mathscr F_n}_{n \in \mathbb N}, \mathbb P) $ 在哪裡 $ \mathscr F_n = \mathscr F_n^Y $ ,

定義 $ X = (X_n){n \ge 0} $ 在哪裡 $ X_0 = 0 $ 和 $ X_n = \sum{i=1}^{n} Y_i $

讓 $ b $ 是一個正整數並且 $ T:= \inf{n: X_n = b} $ .

可以證明,隨機過程 $ M = (M_n){n \ge 0} $ 在哪裡 $ M_n = X_n - n(p-q) $ 是一個 $ ({\mathscr F_n}{n \in \mathbb N}, \mathbb P) $ -鞅。

證明 $ T $ 是一個 $ {\mathscr F_n}_{n \in \mathbb N} $ -停止時間。


我根據之前的問題嘗試了什麼:

情況1:b是奇數

$$ \emptyset = {T = 0} = {T = 1} = … = {T = b-1} = {T = b+1} = … = {T = 2n} = … \in \mathscr F_0 \subseteq \mathscr F_i \ (i = 0, 1, …, b-1, b+1, …, 2n, …) $$ $$ {T = b} = {Y_1 = … = Y_b = 1 } \in \mathscr F_b $$ $$ {T = b+2} = {Y_1 + … = Y_{b+2} = b } \setminus {T = b} \in \mathscr F_{b+2} $$ $$ \vdots $$ $$ {T = 2n+1} = {Y_1 + … = Y_{2n+1} = b } \setminus ({T = b} \cup {T = b+1} \cup {T = 2n - 1})\in \mathscr F_{2n+1} $$ 情況2:b是偶數

$$ \emptyset = {T = 0} = {T = 1} = … = {T = b-1} = {T = b+1} = … = {T = 2n+1} = … \in \mathscr F_0 \subseteq \mathscr F_i \ (i = 0, 1, …, b-1, b+1, …, 2n+1, …) $$ $$ {T = b} = {Y_1 = … = Y_b = 1 } \in \mathscr F_b $$ $$ {T = b+2} = {Y_1 + … = Y_{b+2} = b } \setminus {T = b} \in \mathscr F_{b+2} $$ $$ \vdots $$ $$ {T = 2n} = {Y_1 + … = Y_{2n} = b } \setminus ({T = b} \cup {T = b+1} \cup {T = 2n - 2})\in \mathscr F_{2n} $$ 量子點

是對的嗎?

對於正整數 $ n $ ,

$$ \begin{align*} {T=n} &= \Big(\cap_{k=1}^{n-1} {X_k \ne b}\Big) \cap {X_n = b} \in \mathscr{F}_n. \end{align*} $$ 那是, $ T $ 是一個停止時間。

引用自:https://quant.stackexchange.com/questions/22127