隨機過程

伊藤跳轉過程公式

  • July 2, 2018

讓{ñ噸|0≤噸≤噸} $ {N_t,|,0\leq t\leq T} $ 是一個有強度的Poisson過程λ>0 $ \lambda>0 $ 在機率空間上定義(Ω,F噸,磷) $ (\Omega,\mathcal{F}_t,P) $ 關於過濾F噸 $ \mathcal{F}_t $ 和 X噸=和(λ−這)噸(這λ)ñ噸,

$$ \begin{align} X_t=e^{(\lambda-\eta),t},\left(\frac{\eta}{\lambda}\right)^{N_t}, \end{align} $$ 在哪裡這>0 $ \eta>0 $ .如何獲得dX噸 $ dX_t $ ?

根據伊藤引理,

dX噸=∂X噸∂噸d噸+∂X噸∂ñ(噸)dñ噸+12!∂2X噸∂ñ2噸(dñ噸)2+∂2X噸∂ñ噸∂噸dñ噸d噸+13!∂3X噸∂ñ3噸(dñ噸)3+…

$$ \begin{align} dX_t=\frac{\partial X_t}{\partial t}dt+\frac{\partial X_t}{\partial N(t)}dN_t+\frac{1}{2!}\frac{\partial^2 X_t}{\partial N^2_t}(dN_t)^2+\frac{\partial^2 X_t}{\partial N_t\partial t}{}dN_tdt+\frac{1}{3!}\frac{\partial^3 X_t}{\partial N^3_t}(dN_t)^3+… \end{align} $$ 自從dñ噸d噸=0,(dñ噸)2=(dñ噸)3=…=dñ噸 $ dN_t,dt = 0, (dN_t)^2 = (dN_t)^3 = . . . = dN_t $ , 我們有 dX噸=∂X噸∂噸d噸+(∂X噸∂ñ噸+12!∂2X噸∂ñ2噸+13!∂3X噸∂ñ3噸+…)dñ噸.$$ \begin{align} dX_t=\frac{\partial X_t}{\partial t}dt+\left(\frac{\partial X_t}{\partial N_t}+\frac{1}{2!}\frac{\partial^2 X_t}{\partial N^2_t}+\frac{1}{3!}\frac{\partial^3 X_t}{\partial N^3_t}+…\right)dN_t. \end{align} $$ 另一方面 ∂X噸∂噸=(λ−這)X噸∂nX噸∂ñn噸=[ln(這λ)]nX噸,$$ \begin{align} &\frac{\partial X_t}{\partial t}=(\lambda-\eta),X_t\ &\frac{\partial^n X_t}{\partial N_t^n}=\left[\ln \left(\frac{\eta}{\lambda}\right)\right]^nX_t,\ \end{align} $$ 所以 dX噸=(λ−這)X噸d噸+∞∑n=11n![ln(這λ)]nX噸dñ噸

$$ \begin{align} dX_t=(\lambda-\eta),X_tdt+\sum_{n=1}^{\infty}\frac{1}{n!}\left[\ln \left(\frac{\eta}{\lambda}\right)\right]^nX_t,dN_t \end{align} $$ 我們知道∑∞n=11n![ln(這λ)]n=和Xp(ln(這λ))−1=這λ−1=這−λλ $ \sum_{n=1}^{\infty}\frac{1}{n!}\left[\ln \left(\frac{\eta}{\lambda}\right)\right]^n=exp\left(\ln \left(\frac{\eta}{\lambda}\right)\right)-1=\frac{\eta}{\lambda}-1=\frac{\eta-\lambda}{\lambda} $ 因此我們有 dX噸=(λ−這)X噸d噸+這−λλX噸dñ噸$$ \begin{align} dX_t=(\lambda-\eta),X_tdt+\frac{\eta-\lambda}{\lambda}X_t,dN_t \end{align} $$

引用自:https://quant.stackexchange.com/questions/18589