風險中性與物理措施:現實世界的例子
摘自 7 月中旬的《華爾街日報》新聞報導:
Surging optimism in financial markets hasn’t translated into a big pickup in economic growth. Stocks hit records Friday and big U.S. banks reported stronger-than-expected earnings. But new government data showed consumers pulled back spending at mid-year even as markets rallied. Households also grew less optimistic about the future and inflation on consumer purchases softened.
一位著名的量化分析師回應:
In the quant language: the physical measure and the risk neutral measure are different, and assign different probabilities to future events... There is really no logical contradiction between predictions based on history and those based on market sentiment.
有人可以詳細說明這到底意味著什麼,應該如何解釋,以及它告訴我們未來的什麼?我熟悉風險中性定價理論,但想想這樣一個真實的故事讓我很困惑。
您可以為資產定價 $ X_{t+1} $ 有兩種方式:
$$ P_t=\frac{1}{R_f}\sum_{\omega} Q(\omega)X_{t+1}(\omega) $$ $$ P_t=\sum_{\omega} P(\omega)M_{t+1}(\omega)X_{t+1}(\omega) $$ 可以看到,價格在做聯合聲明(即可以追回 $ Q(\omega) $ ) 關於事件的機率 $ P(\omega) $ 以及有多少人不喜歡該活動,即折扣係數 $ M_{t+1}(\omega) $ . 如果我讓你給一把雨傘定價,不僅價格反映了明天下雨的可能性(即 $ P(rain) $ ) 但是你有多麼不喜歡在沒有雨傘的情況下下雨(即, $ M_{t+1}(rain) $ )。因此,當你觀察雨傘價格上漲時,是因為更容易下雨還是因為人們更不喜歡洗澡?不幸的是,到目前為止還沒有辦法告訴!